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 EXPERIMENT NO :   CS – II/1   

TITLE : FAMILIARIZATION WITH DIGITAL CONTROL SYSTEM TOOLBOX  

OBJECTIVE : To study  

I. Conversion of a transfer function from continuous domain to discrete 
domain. 

II. Conversion of a transfer function from continuous domain to digital 
domain. 

III. Pole Zero Map of a discrete transfer function. 
 

Software Used: MATLAB/ SIMULINK  

THEORY : 
Sampling is a process by which a continuous time system can be converted to discrete domain. Discrete 
time signal x[n] often arises from periodic sampling of continuous time signal xc(t) : 

x[n] = xc (nT)   -∞<n<∞ 

This system is called continuous to discrete time converter or sampler  

T is the sampling period in second, fs = 1/T is the sampling frequency in Hz, Sampling frequency in 
radian-per-second Ωs=2πfs rad/sec.  

 
After sampling a continuous signal an impulse train will be obtained. That impulses are difficult to generate and 
transmit. So it is more convenient to generate sample signal in form of Zero order hold. Such system samples a 
signal x(t) at a given instant and holds that value till the next instant at which sample is taken. The transfer 
function of ZOH is  

G(s)zoh = 1−𝑒𝑒
−𝑇𝑇𝑇𝑇

𝑠𝑠
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MATLAB Commands used: 

sysd = c2d (sys,Ts) is used to convert a transfer function (sys) from continuous to  discrete domain at a sampling 
time of Ts. 

sysd = c2d (sys,Ts, ‘method’)  is used to convert a transfer function (sys) from continuous to  discrete domain at a 
sampling time of Ts using a specific method such as ZOH or foh or tustin method. 

pzmap(sysd) is used to obtain pole zero map of the discrete transfer function (sysd). 

 

Example 1: To convert a transfer function (sys) from continuous to  discrete domain at a sampling time of Ts. 
num = [1] 
den= [1 1 0] 
Ts=0.1 
sys = tf (num,den) 
sysd = c2d(sys,Ts) 
 
Output : 
 
sys: 
   1 
------- 
s^2 + s 
 
sysd : 
 
0.004837 z + 0.004679 
---------------------- 
z^2 - 1.905 z + 0.9048 
  
Sampling time: 0.1 
 

Example 2: To convert a transfer function (sys) from continuous to  discrete domain at a sampling time of 
Ts using ZOH method. 
 

num = [1] 
den= [1 1 0] 
Ts=0.1 
sys = tf (num,den) 
sysd = c2d(sys,Ts, ‘zoh’) 
 
Output : 
sys: 
   1 
------- 
s^2 + s 
  
 sysd: 
0.004837 z + 0.004679 
---------------------- 
z^2 - 1.905 z + 0.9048 
  
Sampling time: 0.1 
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Example 3: To convert a transfer function (sys) from continuous to  discrete domain at a sampling time 
of Ts using FOH method. 

num = [1] 
den= [1 1 0] 
Ts=0.1 
sys = tf (num,den) 
sysd = c2d(sys,Ts, ‘foh’) 
 
Outputs: 
sys: 
   1 
------- 
s^2 + s 
  
  
sysd: 
0.001626 z^2 + 0.006344 z + 0.001547 
------------------------------------ 
       z^2 - 1.905 z + 0.9048 
  
Sampling time: 0.1 
 

Example 4: To convert a transfer function (sys) from continuous to  discrete domain at a sampling time 
of Ts using FOH method. 

num = [1] 
den= [1 1 0] 
Ts=0.1 
sys = tf (num,den) 
sysd = c2d(sys,Ts, ‘tustin’) 
 
Outputs: 
 
sys: 
   1 
------- 
s^2 + s 
  
  
sysd: 
0.002381 z^2 + 0.004762 z + 0.002381 
------------------------------------ 
       z^2 - 1.905 z + 0.9048 
  
Sampling time: 0.1 
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Example 5: Obtaining pole zero map of a discrete transfer function 

num = [1] 
den= [1 1 0] 
Ts=0.1 
sys = tf (num,den) 
sysd = c2d(sys,Ts, 'zoh') 
pzmap(sysd) 
 

 
 
 
 

Assignments:  

Obtain discrete domain transfer functions and pole zero maps of the following s – domain functions using 
(a) ZOH method (b) FOH method (c) Tustin method 

1. G(s) = 1
𝑠𝑠2+𝑠𝑠+4

        2. G(s) = 5
𝑠𝑠2+9

           3. G(s) = 1
(𝑠𝑠2+3𝑠𝑠+5)(𝑠𝑠+3)(𝑠𝑠+5)

 

 
DISCUSSION : 

1. Why continuous signal is to be converted in discrete domain? 
2. What is the function of ZOH device? 
3. What is sampling? 
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EXPERIMENT NO :   CS– II/2   

TILLE : DETERMINATION OF Z – TRANSFORM, INVERSE Z- TRANSFORM & POLE 
ZERO MAP OF DISCRETE SYSTEMS 

OBJECTIVE : To determine  

I. Z transform of a discrete time signal 
II. Inverse Z transform of a discrete time signal 

III. Factored form and partial fraction form of a rational z function 
IV. Pole zero map of a digital system 

 

Software Used: MATLAB  

THEORY : 
In mathematics and signal processing, the Z-transform converts a discrete time-domain 
signal, which is a sequence of real or complex numbers, into a complex frequency-
domain representation. 

The Z-transform, like many other integral transforms, can be defined as either a one-
sided or two-sided transform. 

 Bilateral Z-transform 

The bilateral or two-sided Z-transform of a discrete-time signal x[n] is the function X(z) 
defined as 

 
. 

Unilateral Z-transform 

Alternatively, in cases where x[n] is defined only for n ≥ 0, the single-sided or unilateral 
Z-transform is defined as 

 

In signal processing, this definition is used when the signal is causal. 

Inverse Z – Transform :  
             The inverse Z transform is defined as x[n] = Z -1 [x(z)] 

http://en.wikipedia.org/wiki/Signal_processing
http://en.wikipedia.org/wiki/Causal_system
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Region of Convergence: 
The set of values of z for which the z-transform G(z) converges is called its region of convergence 
(ROC) 

Useful Commands:  
ztrans is used to obtain z transform of a discrete time signal 
iztrans is used to obtain inverse z transform of a z function 
zp2sos is used to convert a transfer function from rational form to factored form. 
resideuz is used to convert a transfer function from rational form to partial fraction form. 
zplane (num,den) is used to obtain pole zero map of  a Z function.      
 
Example: 

1. Write a matlab code to obtain Z transform of the following discrete function 

X[n] = 𝟏𝟏
𝟒𝟒𝒏𝒏

 u[n]  

Matlab Code: 
 
syms z n 
ztrans(1/4^n) 
 
Output: 
z/(z - 1/4) 

  
2. Write a matlab code to obtain  Inverse Z transform of the following Z function 
X(z) = 2𝑧𝑧

2𝑧𝑧−1
 

 
Matlab Code: 
 

syms z n 
iztrans(2*z/(2*z-1)) 

Output: 
(1/2)^n 
 

3. Write a matlab code to convert rational form of the following z function in factored   
form 

             2z4+16z3+44z2+56z+32 
G(z)=  --------------------------------  

        3z4+3z3-15z2+18z-12 
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Matlab Code:  
syms z n 
num = [2 16 44 56 32] 
den = [3 3 -15 18 -12] 
[z,p,k] = tf2zp(num,den) 
gzfct = zp2sos(z,p,k) 
 

Output : 
num = 

     2    16    44    56    32 

den = 

    3     3   -15    18   -12 

z = 

  -4.0000           

  -2.0000           

  -1.0000 + 1.0000i 

  -1.0000 - 1.0000i 

p = 

  -3.2361           

   1.2361           

   0.5000 + 0.8660i 

   0.5000 - 0.8660i 

k = 

    0.6667 

gzfct = 

 

    0.6667    4.0000    5.3333    1.0000    2.0000   -4.0000 

    1.0000    2.0000    2.0000    1.0000   -1.0000    1.0000 

 

4. Write a matlab code to convert rational form of the following z function in partial fraction 
form 

                                                            18z3 

                 G(z)=   ------------------ 
                                                   18z3+3z2-4z-1 
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Matlab Code: 
syms z n 
num = [18 0 0 0] 
den = [18 3 -4 -1] 
[r,p,k] = residuez(num,den) 
 
Outputs : 
num = 
    18     0     0     0 
den = 
    18     3    -4    -1 
r = 
    0.3600 
    0.2400 
    0.4000 
p = 
    0.5000 
   -0.3333 
   -0.3333 
k = 
     0 

 
5. Write a matlab code to obtain pole zero map of the following z function 

 
Matlab Code:  

 
syms z n 
num = [0 1 1] 
den = [1 -2 3] 
zeros = roots(num) 
poles = roots(den) 
zplane(num,den) 

Output: 
num = 

     0     1     1 

den = 

     1    -2     3 

zeros = 

    -1 

poles = 

   1.0000 + 1.4142i 

   1.0000 - 1.4142i 
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Pole zero map 

 
 
Assignments: 
1. Determine Z transform of the following discrete functions: 

(a) X[n] = (1/16n) u(n) (b) x[n] = 0.5n u(n) 
2. Determine inverse Z transform of the following discrete functions: 

(a) X[z]= 3*Z/(Z+1) (b) x[z] = 18𝑧𝑧3

18𝑧𝑧3+3𝑧𝑧2−4𝑧𝑧−1
 

                  
3. Obtain factored form and partial fraction form of the following z function, find pole zero values and 

also plot pole zero map using MATLAB. 
 

X[z] = 2𝑧𝑧
4+16𝑧𝑧3+44𝑧𝑧2+56𝑧𝑧+32

3𝑧𝑧4+3𝑧𝑧3−15𝑧𝑧2+18𝑧𝑧−12
 

DISCUSSION : 
1. What is Z transform? 
2. Why Z transformation is needed in discrete systems? 
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EXPERIMENT NO :   CS– II/3   

TILLE : TO STUDY STEP RESPONSE OF A DISCRETE TIME SYSTEM AND EFFECT OF 
SAMPLING TIME ON SYSTEM RESPONSE 

OBJECTIVE : To study  

I. Closed loop response of a discrete time system 
II. Comparison of time responses of continuous time and discrete time 

systems 
III. Effect of sampling time on system response and system parameters 

 

Software Used: MATLAB  

THEORY : 
Absolute stability is a basic requirement of all control systems. Apart from that, good relative stability 
and steady state accuracy are also required in any control system, whether continuous time or discrete 
time. Transient response corresponds to the system closed loop poles and steady state response 
corresponds to the excitation poles or poles of the input function. 

In many practical control systems, the desired performance characteristics are specified in terms of time 
domain quantities. Unit step input is most commonly used in analysis of a system since it is easy to 
generate and represent a sufficiently drastic change thus providing useful information on both transient 
and steady state responses. The transient response of a system depends on the initial conditions. It is a 
common practice to consider the system initially at rest. Consider the digital control system shown in 
Figure1 

 

 
Similar to the continuous time case, transient response of a digital control system can also be 
characterized by the following.  

1. Rise time (tr): Time required for the unit step response to rise from 0% to 100% of its final value in 
case of underdamped system or 10% to 90% of its final value in case of overdamped system.  

2. Delay time (td): Time required for the the unit step response to reach 50% of its final value. 
3. Peak time (tp): Time at which maximum  peak occurs. 

 4. Peak overshoot (Mp): The difference between the maximum peak and the steady state value of the 
unit step response.  

5. Settling time (ts): Time required for the unit step response to reach and stay within 2% or 5% of its 
steady state value.  



CONTROL SYSTEM II LAB. MANUAL   EE 693 

Page | 12 
 

However since the output response is discrete the calculated performance measures may be slightly 
different from the actual values. Figure 2 illustrates this. The output has a maximum value cmax 
whereas the maximum value of the discrete output is c ∗ max which is always less than or equal to 
cmax. If the sampling period is small enough compared to the oscillations of the response then this 
difference will be small otherwise c ∗ max may be completely erroneous. 

 
Example 1: Consider a unity feedback control system having forward path transfer function G(s) = 

1
𝑠𝑠(𝑠𝑠+1)

 .  

Determine (i) step response in continuous and discrete domain. 

                   (ii) effect of sampling time on system response 

 
Matlab Code: 

n=[1] 
d=[1 1 0] 
sys=tf(n,d) 
sysz=c2d(sys,1,'zoh') 
sysc=feedback(sys,1) 
syscz=feedback(sysz,1) 
step(syscz,'b') 
hold on 
sysz1=c2d(sys,.5,'zoh') 
syscz2=feedback(sysz1,1) 
step(syscz2,'g') 
hold on 
sysz2=c2d(sys,.10,'zoh') 
syscz3=feedback(sysz2,1) 
step(syscz3,'m') 
hold on 

Matlab Result: 
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Simulink Model: 

 
Simulink Output : 
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Assignments: 
1. Build simulink model to obtain step response of a unity feedback system whose closed loop transfer 

function is given by: 
T(s) = 1

𝑠𝑠2+𝑠𝑠+1
.  Also show effect of sampling time on time response specification parameters. 

  
2.  Write down matlab code to obtain step response of a unity feedback system having forward path 

transfer function of G(s) = 1
𝑠𝑠2+4𝑠𝑠+3

. Also show effect of sampling time on time response specification 
parameters.  
 

Discussion: 
1. How sampling time affects rise time, peak time, % overshoot, settling time of a system? 
2. How practical sample and hold circuit works? 
3. Derive expression for transfer function of a zero order hold. 
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EXPERIMENT NO :   CS– II/4   

TILLE : DESIGN OF A LEAD COMPENSATOR USING BODE PLOT METHOD 
OBJECTIVE : To design a lead compensator to obtain system response with desired accuracy, less 
overshoot. 

Software Used: MATLAB  

THEORY :    
A system which has one pole and one dominating zero (the zero which is closer to the 
origin than all over zeros is known as dominating zero.) is known as lead network. If we 
want to add a dominating zero for compensation in control system then we have to 
select lead compensation network. The basic requirement of the phase lead network is 
that all poles and zeros of the transfer function of the network must lie on (-)ve real axis 
interlacing each other with a zero located at the origin of nearest origin. Given below is 
the circuit diagram for the phase lead compensation network. 

Phase 
Lead Compensation Network From above circuit we get,  

 
Equating above expression of I we get,  
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Now let us determine the transfer function for the given network and the transfer function 
can be determined by finding the ratio of the output voltage to the input voltage. So 
taking Laplace transform of both side of above equations,  

 
On substituting the α = (R1 +R2)/ R2 & T = {(R1R2) /(R1 +R2)} in the above equation. 
Where T and α are respectively the time constant and attenuation constant, we have  

 
The above network can be visualized as an amplifier with a gain of 1/α. Let us draw the 
pole zero plot for the above transfer function. 

 
Pole Zero Plot of Lead Compensating Network 

 
Clearly we have -1/T (which is a zero of the transfer function) is closer to origin than the 
-1/(αT) (which is the pole of the transfer function).Thus we can say in the lead 
compensator zero is more dominating than the pole and because of this lead network 
introduces positive phase angle to the system when connected in series. 

http://www.electrical4u.com/voltage-or-electric-potential-difference/
http://www.electrical4u.com/laplace-transformation/
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Let us substitute s = jω in the above transfer function and also we have α < 1. On finding 
the phase angle function for the transfer function we have  

 
Now in order to find put the maximum phase lead occurs at a frequency let us 
differentiate this phase function and equate it to zero. On solving the above equation we 
get  

 
Where, θm is the maximum phase lead angle. And the corresponding magnitude of the 
transfer function at maximum θm is 1/a.  
 
Effect of Phase Lead Compensation 
 
The velocity constant Kv increases. 
The slope of the magnitude plot reduces at the gain crossover frequency so that relative 
stability improves & error decrease due to error is directly proportional to the slope. 
Phase margin increases. 
Response become faster. 
 
Advantages of Phase Lead Compensation 
 
Let us discuss some of the advantages of the phase lead compensation-  
Due to the presence of phase lead network the speed of the system increases because it 
shifts gain crossover frequency to a higher value. 
Due to the presence of phase lead compensation maximum overshoot of the system 
decreases. 
Disadvantages of Phase Lead Compensation 
Some of the disadvantages of the phase lead compensation -  
Steady state error is not improved. 

Example: 
1. Write a matlab code to design a phase-lead compensator for the system

( ) ( )1
1
+

=
ss

sG , such that the steady-state error is less than 0.1 for a unit ramp 

input and a % overshoot less than 28%. 
 

Steady-state error specification 

 
( ) ( )

10    1.011
1
1limlim

00

≥⇒<==

=
+
⋅

==
→→

K
KK

e

K
ss
KsssGK

V
ss

ss
V
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% overshoot specification 
           

 
21100Overshoot % ζ

ζπ

−
−

= e  
To maintain an overshoot of 28% , ζ  = 0.4 
Then, the relationship between phase margin (PM) and damping ratio (ζ ) for the 

special case of open-loop transfer function ( ) ( )n

n
ss

sG
ζω

ω
2

2

+
=  which is given by 

          

 














−−
= −

22

1

241

2tanPM
ζζ

ζ   

 
 
Phase-lead design procedure: 

 
i.) Choose the DC gain constant K  such that the steady-state error specification is met.  

From above, we know K  must be greater than or equal to 10, so let 10=K . 
ii.) Obtain the gain margin and phase margin plots of the uncompensated system along 

with the DC gain constant K found in (i.) to determine the amount of phase lead mθ  
needed to realize the required phase margin so that the percent overshoot 
specification is met. 

 

 
 

  
 

From Figure above, the PM of the uncompensated system 20PM ≈uncomp .  Thus, 

choosing the PM of the compensated system as 45PM =comp , then the additional 

amount of phase lead 25PMPM =−= uncompcompmθ .  Now that mθ  has been 
determined, the parameter α  of the phase-lead compensator can be chosen using 
the equation given below: 

Figure.  Bode plot of uncompensated system ( )sGK ⋅ . 
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 which has been chosen to be 3.0=α  which corresponds to a maximum phase lead 
of 33 . 

iii.) The maximum phase lead mθ  must be added around the new gain-crossover 
frequency mω .  The phase-lead compensator contributes a gain around 

( ) dB2.53.0log10 =−  at the new mω ; therefore, one must determine the frequency 
at which the uncompensated system has a magnitude ( ) dB2.53.0log10 −= .  Thus, 

mω should equal this frequency so that it becomes the new 0-dB crossover 
frequency in the compensated system.  From inspection of Figure , the magnitude of 
the uncompensated system equals –5.2dB at the frequency secrad 5.4=ω .  Let 

secrad 5.4=mω . 
 
iv.) Calculate the parameters of the phase-lead compensator based on the values 

obtained in steps (i.) thru (iii.).  The transfer function of a phase-lead compensator 
is given as 

( ) ( ) 1   with 
1

1or      
1
11

<
+
+

=
+
+

⋅= α
ωα
ωω

αα Tj
TjjC

Ts
TssGc  

  where 
αωm

T 1
= .  Thus, for 3.0=α , sec 41.0=T .  This leads to a phase-lead 

compensator design of the following: 

            

 ( )
1123.0

141.0
+
+

=
s

ssGc  

 
MATLAB CODE FOR PHASE LEAD COMPENSATION: 
wm = 4.5;   
alpha = 0.3;  
T = 1/(wm*sqrt(alpha));  
k= 10;  
gnum = [k]; 
gden = [1 1 0]; 
uncompensated = tf(gnum,gden) 
cnum = [T 1]; 
cden = [T*alpha 1]; 
compensator = tf(cnum,cden) 
numo = conv(cnum,gnum); 
deno = conv(cden,gden); 
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compensated = tf(numo,deno) 
bode(uncompensated,'r',compensated ,'g') 

 

 
uncomtr=feedback(uncompensated,1) 
comtr=feedback(compensated,1) 
step(uncomtr,'y') 
hold on 
step(comtr,'b') 

 
Assignments: 

1. Consider a unity feedback system with G(s) = 𝟒𝟒
𝒔𝒔(𝒔𝒔+𝟐𝟐)

.  
Design a lead compensator to achieve following requirements: 

i. Static velocity error constant = 20 
ii. Phase margin> 50º 

DISCUSSION : 
1. Draw magnitude & phase plot of a phase lead compensator. 
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EXPERIMENT NO :   CS– II/5   

TILLE : DESIGN OF A LAG COMPENSATOR USING BODE PLOT METHOD 
OBJECTIVE : To design a lag compensator to meet performance specification parameters 

 

Software Used: MATLAB  

THEORY :    
A system which has one zero and one dominating pole ( the pole which is closer to origin 
that all other poles is known as dominating pole) is known as lag network. If we want to 
add a dominating pole for compensation in control system then, we have to select a lag 
compensation network. 
The basic requirement of the phase lag network is that all poles & zeros of the transfer 
function of the network must lie in (-)ve real axis interlacing each other with a pole 
located or on the nearest to the origin. Given below is the circuit diagram for the phase 
lag compensation network.  

 
Phase Lag Compensating Network  

 
We will have the output at the series combination of the resistor R2 and the capacitor C. 

From the above circuit diagram, we get 

 
Now let us determine the transfer function for the given network and the transfer function 
can be determined by finding the ratio of the output voltage to the input voltage. 
Taking Laplace transform of above two equation we get,  

http://www.electrical4u.com/types-of-resistor-carbon-composition-and-wire-wound-resistor/
http://www.electrical4u.com/what-is-capacitor-and-what-is-dielectric/
http://www.electrical4u.com/voltage-or-electric-potential-difference/
http://www.electrical4u.com/laplace-transformation/
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On substituting the T = R2C and β = {(R2 + R1 ) / R1} in the above equation (where T and 
β are respectively the time constant and dc gain), we have  

 
The above network provides a high frequency gain of 1 / β. Let us draw the pole zero plot 

for the above transfer function. 

 
Pole Zero Plot of Lag Network Clearly we have -1/T (which is a zero of the transfer 
function) is far to origin than the -1 / (βT)(which is the pole of the transfer function). 
Thus we can say in the lag compensator pole is more dominating than the zero and 
because of this lag network introduces negative phase angle to the system when 
connected in series.  
Let us substitute s = jω in the above transfer function and also we have a < 1. On finding 
the phase angle function for the transfer function we have  

 
Now in order to find put the maximum phase lag occurs at a frequency let us differentiate 
this phase function and equate it to zero. On solving the above equation we get  



CONTROL SYSTEM II LAB. MANUAL   EE 693    

Page | 23  
 

 
Where, θm is the maximum phase lead angle. Remember β is generally chosen to be 
greater than 10. 

Example: 

Design a phase-lag compensator for the system ( ) ( )1
1
+

=
ss

sG , such that the steady-

state error is less than 0.1 for a unit ramp input and a percent overshoot less than 
25%. 
 

Steady-state error specification 
 10≥K . 

 

Percent overshoot specification 
45PM ≥comp . 

 
Phase-lag design procedure: 

 
i.) Choose the DC gain constant K  such that the steady-state error specification is 

met.  From above, we know K  must be greater than or equal to 10, so let 10=K . 
ii.) Obtain the gain margin and phase margin plots of the uncompensated system along 

with the DC gain constant K found in (i.) to estimate the frequency at which the 
PM of 50  occurs.  Denote this frequency as the new gain-crossover frequency mω
.  From Figure 8., let secrad 84.0=mω . 
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                  Figure 8.  Bode plot of uncompensated system ( )sGK ⋅ . 
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iii.) Determine the magnitude of uncompensated system at secrad 84.0=mω .  From 

Figure 8., the magnitude of the uncompensated system at secrad 84.0=mω  is 20 
dB.  To bring the magnitude curve down to 0 dB at mω , the phase-lag compensator 

must provide ( ) dB 20log20 =α  or 1010 20
20

==α . 
iv.) Calculate the parameters of the phase-lag compensator based on the values obtained 

in steps (i.) thru (iii.).  The transfer function of a phase-lag compensator is given as 

( ) ( ) 1   with 
1

1or      
1
11

>
+
+

=
+
+

⋅= α
ωα
ωω

αα Tj
TjjC

Ts
TssC  

  where sec 9.1110
==

m
T

ω
.  This is to ensure that the frequency at 

T
1

=ω   is one 

decade below the new gain-crossover frequency mω .  This leads to a phase-lag 
compensator design of the following: 

            

 ( )
1119
19.11

+
+

=
s
ssC . 

MATLAB CODE FOR PHASE LAG COMPENSATION: 
wm = 0.84;   
beta = 10;  
T = 10/(wm);  
k= 10;  
gnum = [k]; 
gden = [1 1 0]; 
uncompensated = tf(gnum,gden) 
cnum = [T 1]; 
cden = [T*beta 1]; 
compensator = tf(cnum,cden) 
numo = conv(cnum,gnum); 
deno = conv(cden,gden); 
compensated = tf(numo,deno); 
bode(uncompensated,'r', compensated,'g') 

 



CONTROL SYSTEM II LAB. MANUAL   EE 693    

Page | 25  
 

uncomtr=feedback(uncompensated,1) 
comtr=feedback(compensated,1) 
step(uncomtr,'y') 
hold on 
step(comtr,'b') 

 
 

DISCUSSION : 
1. How lag compensator works? 
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EXPERIMENT NO :   CS– II/6   

TILLE : DETERMINATION OF STEP RESPONSE OF A DIGITAL SYSTEM DUE TO VARIATION IN 
CONTROLLER PARAMETERS 

OBJECTIVE : To study  

I. The effect of variation in controller parameter on system response 
 

Software Used: MATLAB  

THEORY :    
PID controllers use a 3 basic behavior types or modes: P - proportional, I - integrative and D - 

derivative. While proportional and integrative modes are also used as single control 
modes, a derivative mode is rarely used on it’ s own in control systems. Combinations 
such as PI and PD control are very often in practical systems.  

P Controller: In general it can be said that P controller cannot stabilize higher order processes. For the 
1st order processes, meaning the processes with one energy storage, a large increase in 
gain can be tolerated. Proportional controller can stabilize only 1st order unstable 
process. Changing controller gain K can change closed loop dynamics. A large controller 
gain will result in control system with: a) smaller steady state error, i.e. better reference 
following b) faster dynamics, i.e. broader signal frequency band of the closed loop 
system and larger sensitivity with respect to measuring noise c) smaller amplitude and 
phase margin When P controller is used, large gain is needed to improve steady state 
error. Stable systems do not have problems when large gain is used. Such systems are 
systems with one energy storage (1st order capacitive systems). If constant steady state 
error can be accepted with such processes, than P controller can be used. Small steady 
state errors can be accepted if sensor will give measured value with error or if importance 
of measured value is not too great anyway. 

PD Controller: D mode is used when prediction of the error can improve control or when it necessary to 
stabilize the system. From the frequency characteristic of D element it can be seen that it 
has phase lead of 90°. 

Often derivative is not taken from the error signal but from the system output variable. This is done to 
avoid effects of the sudden change of the reference input that will cause sudden change in 
the value of error signal. Sudden change in error signal will cause sudden change in 
control output. To avoid that it is suitable to design D mode to be proportional to the 
change of the output variable. PD controller is often used in control of moving objects 
such are flying and underwater vehicles, ships, rockets etc. One of the reason is in 
stabilizing effect of PD controller on sudden changes in heading variable y(t). Often a 
"rate gyro" for velocity measurement is used as sensor of heading change of moving 
object. 

 
 PI Controller: PI controller will eliminate forced oscillations and steady state error resulting in 

operation of on-off controller and P controller respectively. However, introducing 
integral mode has a negative effect on speed of the response and overall stability of the 
system. Thus, PI controller will not increase the speed of response. It can be expected 
since PI controller does not have means to predict what will happen with the error in near 
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future. This problem can be solved by introducing derivative mode which has ability to 
predict what will happen with the error in near future and thus to decrease a reaction time 
of the controller. PI controllers are very often used in industry, especially when speed of 
the response is not an issue. A control without D mode is used when: a) fast response of 
the system is not required b) large disturbances and noise are present during operation of 
the process c) there is only one energy storage in process (capacitive or inductive) d) 
there are large transport delays in the system. 

 
PID Controller: PID controller has all the necessary dynamics: fast reaction on change of the 

controller input (D mode), increase in control signal to lead error towards zero (I mode) 
and suitable action inside control error area to eliminate oscillations (P mode). Derivative 
mode improves stability of the system and enables increase in gain K and decrease in 
integral time constant Ti, which increases speed of the controller response. PID controller 
is used when dealing with higher order capacitive processes (processes with more than 
one energy storage) when their dynamic is not similar to the dynamics of an integrator 
(like in many thermal processes). PID controller is often used in industry, but also in the 
control of mobile objects (course and trajectory following included) when stability and 
precise reference following are required. Conventional autopilot is for the most part PID 
type controllers.  

Effects of Coefficients: 

 
A discrete implementation of proportional control is identical to continuous. The 
continuous is  
u(t) = kp e(t) ; D(s) = kp 
u(k) = kp e(k) ; D(z) = kp 
The discrete is 
where e(t) or e(k) is the error signal and kp is proportional gain. 

The continuous time derivative control can be expressed as 
u(t) = kd 𝑒̇𝑒 (t) ; D(s) = kds 
The discrete derivative control equation can be written as 
u(k) = kd

𝑒𝑒(𝑘𝑘)− 𝑒𝑒(𝑘𝑘−1)
𝑇𝑇  ; D(z) = kd 

1−𝑧𝑧−1

𝑇𝑇
 = kd 

𝑧𝑧−1
𝑇𝑇𝑇𝑇

 
The continuous time integral control can be expressed as 
u(t) = ki ∫ 𝑒𝑒(𝑡𝑡)𝑑𝑑𝑑𝑑  ; D(s) = ki /s 
u(k) = u(k-1)+kiTe(k)  ; D(z) =  ki 

𝑇𝑇
1−𝑧𝑧−1  = ki 

𝑇𝑇𝑇𝑇
𝑧𝑧−1

 
 
The discrete PID controller can be represented as 
Gpid(z) = kp+ ki 

𝑇𝑇𝑇𝑇
𝑧𝑧−1

+ kd 
𝑧𝑧−1
𝑇𝑇𝑇𝑇
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Example: 
1. Consider a unity feedback system with forward path transfer function G(s) = 1

𝑠𝑠2+10𝑠𝑠+20
. Convert this 

system in z-domain with T = 0.1 sec. Show the effect of addition of a PD controller on the system 
performance. 
 

num=1; 
den=[1 10 20]; 
g1=tf (num,den) 
t1=feedback(g1,1) 
d1=c2d(t1,.1,'zoh') 
step(d1,'g') 
hold on 
  
num1=10; 
den1=[1 10 20]; 
g2=tf (num1,den1) 
t2=feedback(g2,1) 
d2=c2d(t2,.1, 'zoh') 
step(d2,'m') 
hold on 
Kp=500; 
Kd=10; 
numc=[Kd Kp]; 
numo=conv(numc,num) 
deno=den 
g3=tf(numo,deno) 
t3=feedback(g3,1) 
d3= c2d(t3,.1,'zoh') 
step(d3,'b') 
hold on 
Kp=500; 
Kd=5; 
numc=[Kd Kp]; 
numo=conv(numc,num) 
deno=den 
g3=tf(numo,deno) 
t3=feedback(g3,1) 
d3= c2d(t3,.1,'zoh') 
step(d3,'y') 
hold on 
Kp=500; 
Kd=.01; 
numc=[Kd Kp]; 
numo=conv(numc,num) 
deno=den 
g3=tf(numo,deno) 
t3=feedback(g3,1) 
d3= c2d(t3,.1,'zoh') 
step(d3,'r') 
hold on 
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2. Consider a unity feedback system with forward path transfer function G(s) = 1

𝑠𝑠2+10𝑠𝑠+20
. Convert this 

system in z-domain with T = 0.1 sec. Show the effect of addition of a PI controller on the system 
performance. 
 

 
num=1; 
den=[1 10 20]; 
g1=tf (num,den) 
t1=feedback(g1,1) 
d1=c2d(t1,.1,'zoh') 
step(d1,'g') 
hold on 
  
num1=10; 
den1=[1 10 20]; 
g2=tf (num1,den1) 
t2=feedback(g2,1) 
d2=c2d(t2,.1, 'zoh') 
step(d2,'m') 
hold on 
Kp=500; 
Ki = 1 
numc=[Kp Ki]; 
denc= [1 0] 
numo=conv(numc,num) 
deno=conv(den,denc) 
g3=tf(numo,deno) 
t3=feedback(g3,1) 
d3= c2d(t3,.1,'zoh') 
step(d3,'b') 
hold on 
Kp=500; 
Ki = 100 
numc=[Kp Ki]; 
denc= [1 0] 
numo=conv(numc,num) 
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deno=conv(den,denc) 
g3=tf(numo,deno) 
t3=feedback(g3,1) 
d3= c2d(t3,.1,'zoh') 
step(d3,'r') 
hold on 
Kp=500; 
Ki = 500 
numc=[Kp Ki]; 
denc= [1 0] 
numo=conv(numc,num) 
deno=conv(den,denc) 
g3=tf(numo,deno) 
t3=feedback(g3,1) 
d3= c2d(t3,.1,'zoh') 
step(d3,'g') 
hold on 
 

 
 

 
Assignments: 
 
1. Consider a unity feedback system with forward path transfer function G(s) = 1

𝑠𝑠(𝑠𝑠+1.6)
. Convert 

this system in z-domain with T = 0.1 sec. Show the effect of addition of a PD controller on the 
system performance. 

2. Consider a unity feedback system with forward path transfer function G(s) = 1
𝑠𝑠(𝑠𝑠+1.6)

. Convert 
this system in z-domain with T = 0.1 sec. Show the effect of addition of a PI controller on the 
system performance. 

3. Consider a unity feedback system with forward path transfer function G(s) = 1
𝑠𝑠(𝑠𝑠+1.6)

. Convert 
this system in z-domain with T = 0.1 sec. Show the effect of addition of a PID controller on the 
system performance. 
 

Discussion: 
 

1. What is the effect of derivative gain in system performance? 
2. What is the effect of integral gain in system performance? 
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EXPERIMENT NO :   CS /7   

TITLE : DETERMINATION OF STATE SPACE MODEL FROM TRANSFER FUNCTION MODEL 
& VICE VERSA.  

OBJECTIVE : To obtain 

I. Transfer function model from a state model 
II. State model from transfer function model 
III. Step response of a system represented by its state model 

Software Used: MATLAB/ SIMULINK  
Example 1: Obtain transfer function and its step response of a state model given by: 

𝑥𝑥1̇
𝑥̇𝑥2

 = � 0 1
−1 −1� �

𝑥𝑥1
𝑥𝑥2
� + [ 01 ] u 

Y = [1 0] �𝑥𝑥1
𝑥𝑥2
�  

Matlab Code: 
 
a = [0 1; -1 -1] 
b = [0;1] 
c = [1 0] 
d=0 
[num,den] = ss2tf(a,b,c,d) 
g = tf(num,den) 
step(g) 
 
Output : 
 
Transfer function: 
     1 
----------- 
s^2 + s + 1 
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Example 2: Obtain state model and its step response of a transfer function given by: 
 

G(s) = 1
𝑠𝑠2+10𝑠𝑠+20

 
Matlab Code: 
 
num = [1] 
den = [1 10 20] 
[A,B,C,D]= tf2ss(num,den) 
step(A,B,C,D) 
 
Output: 
 
A = 
 
   -10   -20 
     1     0 
 
B = 
 
     1 
     0 
 
C = 
 
     0     1 
 
D = 
 
     0 
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EXPERIMENT NO :   CS /8   

TITLE : DETERMINATION OF EIGEN VALUES FROM STATE MODEL & STABILITY 
ANALYSIS 

OBJECTIVE : To determine 

I. Eigen values from state model 
II. Eigen values from transfer function model 
III. Stability of a system 

Software Used: MATLAB/ SIMULINK  
Example 1: Obtain transfer function and its step response of a state model given by: 

𝑥𝑥1̇
𝑥̇𝑥2

 = � 0 1
−1 −1� �

𝑥𝑥1
𝑥𝑥2
� + [ 01 ] u 

Y = [1 0] �𝑥𝑥1
𝑥𝑥2
�  

Matlab Code: 
 
a = [0 1; -1 -1] 
b = [0;1] 
c = [1 0] 
d=0 
[num,den] = ss2tf(a,b,c,d) 
g = tf(num,den) 
eig(a) 
if (eig(a)< 0) 
    system = 1 
else 
    system = 0 
end 
 
*[Note: system = 1 represents stable system ; system = 0 
represents unstable system] 
 
Output: 
 
Transfer function: 
     1 
----------- 
s^2 + s + 1 
  
ans = 
 
  -0.5000 + 0.8660i 
  -0.5000 - 0.8660i 
 
system = 
 
     1 
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Example 2: Obtain eigen values of a transfer function given by: 
 

G(s) = 1
𝑠𝑠2+10𝑠𝑠+20

 
Matlab Code: 
 
num = [1] 
den = [1 10 20] 
[A,B,C,D]= tf2ss(num,den) 
eig (A) 
if (eig(a) < 0) 
    system = 1 
else 
    system = 0 
end 
 
*[Note: system = 1 represents stable system ; system = 0 
represents unstable system] 
 
 
Output: 
 
A = 
 
   -10   -20 
     1     0 
 
B = 
 
     1 
     0 
 
C = 
 
     0     1 
 
D = 
 
     0 
ans = 
 
   -7.2361 
   -2.7639 
 
 
system = 
 
 
     1 
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EXPERIMENT NO :   CS /9 

TITLE : STUDY THE EFFECT OF COMMON NON – LINEARITIES INTRODUCED TO THE 
FORWARD PATH TRANSFER FUNCTION OF A 2ND ORDER UNITY FEEDBACK 
CONTROL SYSTEM 

OBJECTIVE : To study  

I. the effect of  common non linearities such as relay, dead zone, saturation on 
response of a 2nd order control system. 

THEORY:  

Consider the typical block shown in Figure 1. It is composed of four parts: a plant to be 
controlled, sensors for measurement, actuators for control action, and a control low, usually 
implemented on a computer. Nonlinearities may occur in any part of the system, thus make it a 
nonlinear control system. 

Nonlinearities can be classified as continuous and discontinuous. Because discontinuous 
nonlinearities cannot be locally approximated by linear functions, they are also called “hard” 
nonlinearities. Hard nonlinearities are commonly found in control systems, both in small range 
operation and large range operation. Whether a system in small range operation should be 
regarded as nonlinear or linear depends on the magnitude of the hard nonlinearities and on the 
extent of their effects on the system performance.  

Saturation: When one increases the input to a physical device, the following phenomenon is often 
observed: when the input is small, its increase leads to a corresponding (often proportional) 
increase of output: but when the input reaches a certain level, its further increase does 
produce little or no increase of the output. The output simply stays around its maximum 
value. The device is said to be saturation when this happen. A typical saturation nonlinearity 
is represented in Figure 2, where the thick line is the real nonlinearity and the thin line is an 
idealized saturation nonlinearity. 

 

Dead-Zone: Consider the dead-zone characteristics shown in Figure 6, with the dead-zone with being 
2δ and its slope k  
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Dead-zones can have a number of possible effects on control systems. Their most common effect is to 
decrease static output accuracy. They may also lead to limit cycles or system instability because of the 
lack of response in the dead-zone. The response corresponding to a sinusoidal input x(t)=Asin(ωt) into a 
dead-zone of width 2δ and slope k, with A≥δ, is plotted in Figure 7. Since the characteristics is an odd 
function, a1=0. The response is also seen to be symmetric over the four quarters of a period. In one 
quarter of a period, i.e., when 0≤ωt≤p/2, one has 

Software Used: MATLAB/ SIMULINK  

Example 1: Show the effect of saturation with limit 0.5 introduced in the forward path of a open 
loop system having G(s) = 𝟏𝟏

𝒔𝒔𝟐𝟐+𝒔𝒔+𝟏𝟏
.   

 

 
SIMULINK MODEL 
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MATLAB RESULT 

 
Example 2: Show the effect of dead zone with limit 0.5 introduced in the forward path of a open 

loop system having G(s) = 𝟏𝟏
𝒔𝒔𝟐𝟐+𝒔𝒔+𝟏𝟏

.   
 
 

 
SIMULINK MODEL 
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MATLAB RESULT 
 

Example 3: Show the effect of relay with on & off point of 0.3 & 0.2 respectively introduced in 
the forward path of a open loop system having G(s) = 𝟏𝟏

𝒔𝒔𝟐𝟐+𝒔𝒔+𝟏𝟏
.   

 

 
SIMULINK MODEL 
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MATLAB RESULT 
 

Example 4: Show the effect of dead zone with limit 0.5 introduced in the forward path of a unity 
feedback closed loop system having G(s) = 𝟏𝟏

𝒔𝒔𝟐𝟐+𝒔𝒔+𝟏𝟏
.   

 

 
SIMULINK MODEL 
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MATLAB RESULT 

 
Example 5: Show the effect of saturation with limit 0.5 introduced in the forward path of a unity 

feedback closed loop system having G(s) = 𝟏𝟏
𝒔𝒔𝟐𝟐+𝒔𝒔+𝟏𝟏

.   
 

 
SIMULINK MODEL 
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MATLAB RESULT 

 
Example 6: Show the effect of relay with on & off point of 0.3 & 0.2 respectively introduced in the  

forward path of a unity feedback closed loop system having G(s) = 𝟏𝟏
𝒔𝒔𝟐𝟐+𝒔𝒔+𝟏𝟏

.   
 

 
SIMULINK MODEL 

 



CONTROL SYSTEM II LAB. MANUAL   EE 693 

Page | 42 
 

 
MATLAB RESULT 
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